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Abstract-A two-phase material in which the phase boundaries are cylindrical surfaces is considered (fibre- 
reinforced material). We consider such a material for which the precise details of phase geometry are not 
known, and investigate to what extent knowledge of the etTective transverse thermal conductivity for one pair 
of phase conductivities determines the effective conductivity for a geometrically identical material with 
different phase conductivities. Also considered is whether or not one can hope to obtain narrow bounds on 

effective conducti~ty in terms of three-point correlation functions. 

NOMENCLATURE composite material the phase geometry of which is not 

c, geometry dependent constants in known exactly, it being random in nature. Recently 
power series expansion of effective techniques have been developed for introducing stat- 
conductivity; istical geometricinformation in order to find solutions, 

d, diameters in composite or bounds, on thermal conductivity [l, 21. However 
microstructure; the statistical information required in these methods is 

e, parameter determining C, ; far harder to acquire than simply to measure effective 

1, fraction determining nearness of conductivity. A great advance was made earlier by 
composite microstructure to a Hashin and Shtrikman [3] for the three-dimensional 
limiting geometry ; case and by Hashin [4,5] for the case to be considered 

k, thermal conductivity; here, i.e. the case of transverse conductivity of fibre- 

u, volume fraction. reinforced materials of arbitrary transverse phase 

Greek symbols 
geometry which are statistically isotropic in the trans- 
verse plane. They found bounds on thermal con- 

% Pa structure parameters of model I; ductivity when only phase conductivities and volume 

6, 6% -M/k, ; fractions are known. They showed that their bounds 

‘I, 3.3 structure parameters of model II. were the best possible, i.e. the narrowest achievable, in 

Subscripts 
the absence of any further knowledge about phase 
geometry. This they did by actually constructing 

a, core ; models, mathematically, for which they could cal- 

b, shell ; culate precisely the effective conductivity and which 

% term in power series expansion of realized their bounds. These models they called “com- 
effective conductivity ; posite spheres assemblages” and “composite cylinders 

1,2, the two materials; assemblages” (CCA) respectively. Using a generaIized 
1,2,3, , , . , terms in power series version of their models the problem of predicting the 

expansion of effective effective transverse thermal conductivity of fibre- 
conductivity. reinforced materials of arbitrary phase geometry will 

Superscripts 
be examined from an entirely new point of view. Some 
interesting conclusions about the dependence of the 

* 9 effective value; transverse conductivity of two-phase fibre-reinforced 
’ or “, condu~~vity values for which materials will be drawn. The models proposed may 

aggregate effective conductivity seem to constitute poor representations of actuai 
is not known. phase geometry. Indeed they are bad representations. 

It is not intended that the formulae presented should 
be used for predicting effective conductivity of two- 

1. ~~ODU~ON phase composites. Rather these models have &en 
THE PRQBLEM of predicting the effective thermal con- chosen purely because their effective conductivities can 
ductivity of two-phase materiab has engaged in- be precisely calculated and because they can be 
vestigators for many years. Generally one deals with a constructed to produce any conductivity between the 
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a composite are given by 

2v,k,(kz-k,) 
k1 +2k, +v,(kz-kl) 
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Hashin bounds. In other words, instead of computing, 
approximately, effective conductivity for a given or 
assumed phase geometry the starting point is to find a 
family of phase geometries corresponding to any given 
effective conductivity between the Hashin bounds. 
This then provides the opportunity for shedding some 
light on the following question : if effective transverse 
conductivity is known for a particular composite for 
one set of phase conductivities, what can be said about 
the effective conductivity of a geometrically identical 
composite with different phase conductivities? The 
question is not simply academic since by virtue of the 
complete mathematical analogy of the problem under 
consideration with those of computing effective electri- 
cal conductivity, effective electrical permittivity and 
effective magnetic permeability (and indeed axial shear 
modulus [5]), we ask whether a measurement of any 
one of these effective “diffusion” constants (constituent 
constants being known) will cast light on the others. 
Since thermal conductivities are generally more dif- 
ficult and time consuming to measure than these other 
quantities the conclusions to be drawn may prove 
useful. 

< k* < kz + 
2u,k,(k, -k,) 

2k,+u,(k, -k2)’ (2’1) 

k, and k, are the conductivities of the two phases with 
the indices being assigned such that k, > k,. The 
volume fractions of the phases are v1 and u2 (u, +u, 
= 1). Hashin further shows how a specific two-phase 
statistically isotropic and homogeneous material (cal- 
led a composite cylinders assemblage) can be con- 
structed from materials ofconductivities k, and k, with 
volume fractions v, and vb such that its effective 
conductivity is given by 

For k, = k, and k, = k, the Hashin upper bound is 
realized. For kb = k, and k, = k2 the lower bound is 
realized. (The procedure for constructing such a 
material is presented in Appendix 1.) Hence the 
Hashin bounds are the best possible when the only 
known geometrical information is volume fractions. 

The above bounds are based on an extension of 
classical variational principles which permits the util- 
ization of the knowledge that the composite is trans- 
versely isotropic. Earlier bounds based on simpler 
classical principles were cruder because they did not 
permit this utilization. 

By a procedure described in Appendix 1 one can 
generalize Hashin’s composite cylinders assemblage 
model so as to arrive at a family of models, the 
transverse conductivities of which are given by 

The techniques pioneered in [l] and [2] for in- 
troducing statistical information in the form of cor- 
relation functions into the bounds on effective con- 
ductivity were later developed for the instance con- 
sidered here, a transversely isotropic two-dimensional 
material [6-81. Bounds were found in terms of three- 
point correlation functions. Schulgasser [9] was able 
to cast these bounds into a form containing only a 
single parameter of geometry additional to volume 
fraction. Left open was the question of the extent to 
which the proposed bounds exhausted the potential 
ability of three-point correlation functions in produc- 
ing narrow bounds. Hashin and Shtrikman [3] and 
Hashin [4] had succeeded in constructing models 
which realized their bounds and they could thus where 
demonstrate that their bounds exhausted all the 
possibilities inherent in the geometrical information 
they utilized, viz. the volume fractions (actually one- 
point correlation functions). It will be shown below 
that the value of the one parameter dependent on 
three-point correlation functions which appears in the 
bounds of [9] can be calculated for the models to be 
proposed. This enables one to investigate the question 
of the extent to which these proposed bounds have 
exhausted the possibilities inherent in the knowledge 
of three-point correlation functions. 

k* = k, + 2k,(au, +h)(ka--kd 
2k,+(l -au, -/$)(k,-kb) 

k’ = kz + 2k,(au, +j?v,)+/3u,(k, -k,) 

k, = k, + 
2kAl -a)v,(k, -k2) 

2k,(l-au,-Bu,)+(l-/Vu&-k,)’ 

Here a and /I are a pair of parameters which can, 
independently, assume any values from 0 to 1, each 
pair representing a different constructable material 
model. This family will be referred to as Ia. 

2. CONSTRUCTION OF THE MODELS 

Consider a two-phase material in which the phase 
boundaries are cylindrical surfaces. No other re- 
striction is made on the geometry of phase boundaries. 
Indeed it is not even required that one phase be 
identifiable as a matrix, the other being the inclusion 
(fibre). It is assumed that the conductivity properties of 
each phase are isotropic and homogeneous and that 
there is perfect contact between the phases. Hashin [4, 
51 showed that the bounds on the transverse con- 
ductivity (perpendicular to phase boundaries) of such 

Using equations (2.3) one can pose the question: 
given k* (between the Hashin bounds) what pairs tl, fl 
(i.e. what geometries) will produce this effective con- 
ductivity? As an example consider the case u, = u2 
= 0.5 with k, = 5, k, = 1. The maximum and mi- 
nimum transverse conductivities for such a material 
are 2.5 and 2 (Hashin bounds). In Fig. 1 lines of 
constant thermal conductivity (isokays) are shown in 
the a-/I plane. It is clear that for any given k* between 
the permitted values, an infinite number of distinct 
geometries will produce this effective conductivity 
within this one class of fibre-reinforced materials. The 
model will be used as a “test” against which to measure 

26 &a - k, 1 
(2.2) 

2k2aul(k, -kJ 

(2.3) 
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0 

FIG. 1. Typical isokay diagram for Models Ia; ~t$ = ul. = 0.5, 
k, = 5, k, = 1. 

several theoretical results. The general pattern of the 
isokays is similar for all ratios kJk,. Thisis illustrated 
in Fig. 2 where the isokays for the ratios 1.1,5,15 and 
100 are drawn for thermal conductivities which are 
located at definite fractions of the difference between 
the thermal conductivities of the extreme CCA models. 

It is shown in Appendix 1 that another family of 
models can be constructed, the effective conductivities 
of which are given by 

where 

2k,O -db,k -kd 
k’=kz+2k,(l-Iv,-qo,)+(1-~)~~(k,-k,). 

2kirjoz(kt-k,) 
(2.5) 

kb= kl + 
2k,(lu,+luz)+lu,(k,-kl)’ 

Here again 1 and ri are a pair of parameters which can, 
independently, assume any values from 0 to 1, each 
pair representing a different constructable material 
model. This family of models will bereferred to as IIa. 
A typical isokay diagram is shown in Fig. 3 for the 
same volume fractions and constituent conductivities 
as were employed in the example for the first models. 
Also shown is an isokay (k* = 4) for the case k,fk, 
= 15. It is noted that this isokay crosses the isokay k* 
= 23 for the case k2/kl = 5 at two points. This does 
not occur for Models I. If the indices 1 and 2 in 
equation (2.5) are interchanged another distinct model 
(IIb) is obtained. 

FIG. 2. Isokays for constant values of i for various ratios kJk,. Models Ia, Do = V, = 0.5. 

This fraction, which will again be referred to in Se&ion 
4, is defined by 

i= k* - kf,, 

k:,z - k2.s ’ 
(2.4) 

Other two-scale models can be constructed. One 
which is distinct from the above can be obtained by 
interchanging the indices 1 and 2 in equations (2.3). 
Isokay diagrams for such a material (IIb) are similar to 
those for the first described model except that high 
isokays appear where previously there were low ones 
and vice versa. 

3. THE PRAGRR PROBLEM 

Prager [lo] first posed and presented a solution to 
the problem of determining bounds on k*’ for one set of 
phase conducti~ti~ when k* is known for some other 
set of phase conduct&it&, nothing being known 
about phase geometry other than volme fractions. 
His results, obtained from classical variational prin- 
ciples, were derived for a statistically isotropic three- 
dimensional two-phase material but the development 
is equally valid line by line for the case under 
consideration here and the tinal results are unchanged. 
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, k’=Z(=k;,) 

k*=2(=k; ,I I-X 

Fro. 3. Typical isokay diagram for Models Ila; u, = v2 
= 0.5, k, = 5, k, = 1. (Dashed line is isokay k* = 4 for the 

case k, = 15, k, = 1.) 

Prager’s bounds [his equations (27) and (28)] are 
written out in full in Appendix 2 in our notation. These 
bounds are not narrow unless the ratio kz/k, is similar 
in both the material for which k* is known and for 
which it is sought. That narrower bounds can some- 
times be found has been shown by Schulgasser [9]. 
It would be desirable if truly narrow bounds (or exact 
results) were achievable, i.e. that knowledge of k* for 
one ratio kz/k, would give meaningful information at 
far different ratios. That this unfortunately is not so 
can be conclusively shown by using the models 
presented in the previous section. Using a model 
described above, Model Ia for instance, all pairs a, p on 
a given isokay for a certain ratio k,/k, can be used to 
find what k*“s are realizable at the new ratio k;/k’,. 
Typically, consider the example u, = u2 = 0.5 with k, 
= 15 and k, = 1 and with k* known to be 4. Then with 
kz changed to 50 the following results are obtained: 

Hashin 2.85 ,< k* < 17.55 
Prager bounds 5.32 < k* < 10.37 
Realizable (Models Ia) 5.98 < k* < 9.49 

The Prager bounds are somewhat better than the 
Hashin bounds, but are not close enough to be 
meaningful. The use of Model Ia shows conclusively 
that it is not possible to improve appreciably on the 
Prager bounds. Maximum and minimum realizable 
values are found lvhen a = 0 and when fl = 1 re- 
spectively For the particular case 0, = v2 = 0.5, Mo- 
dels Ib always produce the same extreme bounds as 
those obtained from Ia. This is not true invariably and 
generally both must be investigated. It has been found 
that the extreme realizable values obtained from 
Models IIa and IIb are always within those attainable 
using Models Ia and Ib. 

One can go even further than above and assume that 
k* is known for two different ratios kJk,. As an 
example we will once more take D, = n2 - 0.5 with k, 
= I5 and k, = 1 and with k* = 4; and further, when 
k; = 5 and k; = 1 take k*’ = 2.3. Considering Models 

IIa we refer to Fig. 3 and it is clear that two pairs R, Q 
(i.e. two different phase geometries) give these results. 
For each of these pairs one can examine k*” for some 
other k’; and k;. Fork’; = 50and k;’ = 1, the two values 
of k*” obtained are 6.075 and 6.533. Thus, when k* is 
known for two ratios k,Jk,, a fairly precise de- 
termination of k* at a third ratio may be possible. The 
Models Ia which produced the large spread when k* is 
known at only one ratio k,jk, does not admit double 
crossing of contour lines. Hence for this model if k* is 
known at two ratiosit is determinate at a third. Models 
Ia predict k*” to be precisely 6.553. Models II do 
permit double crossing, but at the third ratio there is 
only a relatively small spread in realizable k*‘s. Since 
no claim is made that the models exhaust all possibi- 
lities, this is no guarantee that the maximum possible 
spread at the third ratio is indeed small. However since 
they are sufficiently flexible to have realized most of the 
Prager bounds (and, as has been pointed out [9] the 
Prager bounds are not necessarily the best obtainable) 
one would suspect that a calculation of the type 
performed above gives a fairly good indication of the 
possible spread in k* at the third ratio. 

4. BOUNDS BASED ON THREE-POINT 
~ORRELA~ON UNIONS 

Reran and Silnutzer [6,7] and, independently, Hori 
and Yonezawa [8] have found the same bounds on k* 
in terms of integrals of three-point correiation func- 
tions of phase properties. The upper and lower 
bounds are found in terms of different three-point 
correlation functions. It was shown by Schulgasser [9] 
that both of these bounds can be written in terms of a 
single three-point correlation function. It was further 
shown that if k*jkz is expanded in a power series in 6 
= (k2 - k, )/kz, i.e. 

f4.1) 

the C, being dependent only on phase geometry and 
not on phase conductivity, then the single correlation 
function can be related to Ca. The Hashin bounds, 
equation (2.1), expanded in a power series gives: 

lower bound: 

k*Jk2 = 1 - v1 6 -(q v,/2)S2 

-(u,u,/4)(1+v,)63-... 

-(0,v2/2)\I(l+t’2)/2j”-26”-.., (4.2) 

upper bound : 

k*,/k* = 1 -~~S-(v,v~/2)~‘-(1~,0~/4)8~-... 
-(v11)2/2)(v2/2)n-26”-... . (4.3) 

We see that the coefficients of the terms coincide up 
to the second order term and noting the form of the 
third order coefficient in the bounds we see that it is 
convenient to write C, in the form 

c3 = -fJp(o,+l--e). (4.4) 
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e can vary from 0 to 1. Then the bounds in [9] take 
the form 

(4.5) 

These are rigorous bounds which include a single 
parameter, e, of phase geometry additional to the very 
limited information about phase geometry used to 
obtain the Hashin bounds, i.e. volume fractions only. 
One would hope that knowledge of such additional 
geometric information would result in narrow bounds 
on k*. This unfortunately is not the case. The bounds 
(4.5) are quite wide for k,/k, D 1, and we will now 
show, by use of the models ofSection 2, that while these 
may not be the very best bounds achievable in terms of 
e, they cannot be very far from the best achievable. 

It is shown in [9] that 

(4.6) 

or, using equation (4.4) 

e = lim k*-ktl 
kz+k, kf 2 -k* , 2.1’ (4.7) 

Comparing equation (4.7) with (2.4) we note that 

e = lim i. 
kz-kl 

In other words an isokay diagram such as Fig. 2 for 

k,lk , - 1 is a map of constant values of e, a factor 
dependent purely on phase geometry and upon which 
a narrower set of bounds than those of Hashin can be 
based. We can test whether bounds in terms of e much 
better than those of equation (4.5) are possible by 
comparing these bounds for each value e with realiz- 
able values of k* for some k,/k, >> 1 for each such value 
of i. Such a comparison is made in Fig. 4 for the case U, 
= u2 = 0.5 with k, = 15, k, = 1, using k*‘s realizable 
from Models Ia. It is clear that while the bounds may 
not be the best possible they certainly cannot be much 
improved since about two-thirds of the spread between 
them is realizable. 

5. A SIMPLE ESTIMATE OF k*’ 

It has been abundantly illustrated above that know- 
ledge of k* at one ratio k,fk, gives no’ precise 
information on the value of k*’ at some other ratio. 
However an examination of Fig. 2 indicates how a 
reasonable estimate of k*’ can be made. It is seen that 
the i-contour lines for various ratios k2/k, are similar. 
The same conclusion can be drawn for Models II. If 
one simply assumes that the contour lines are the same, 
one arrives at the following simple formula for k*‘: 

k*’ _ k*’ 
2.1 k*-k;,, 

kf12 - k*' = k:,2 - kj,, ’ (5.1) 
. 2.1 

Estimates using this formula lie between the realizable 
effective conductivities using the proposed models, 

6.0 - Hoshin upper bound 
E 

5.0 - 

*s 

s 
.L- 
.g 

Y! 

z 8 4.0 - 

5! ._ 

E 

5 

3.0 - 

A 

L_1 
e 

FIG. 4. Bounds and realizable values of the effective con- 
ductivity k* as a function of the geometrical factor e; o, = v2 

= 0.5, k, = 15, k, = 1. 

usually somewhere near the middle of the range. The 
implications of this estimate with respect to the bounds 
(4.5) are easy to interpret. Referring to Fig. 4 it is clear 
that (5.1) estimates k*’ to lie on the straight line AB, 

when indeed the bounds range on both sides of this 
line. As k,/k, approaches 1 the bounds can be shown 
to close in, approaching line AB [9]. It would then be 
expected that this estimate would be quite precise 
when both k,/k, and k;/k; are close to 1 or at least 
when k,fk, N k;/k’,. An example is given in Table 1 
when neither of these conditions prevails. As is seen the 
estimate indeed falls in the middle of the possible 
range. 

Table 1. Estimates and bounds on effective transverse con- 
ductivity for the case u1 = uz = 0.5 and k; = 100, k\ = 1 

when it is known that for k, = 50, k, = 1, k* = 10 

Lower Upper 
bound Estimate bound 

Hashin 2.92 34.22 
Prager 12.05 18.66 
Realizable (Mods. Ia) 13.22 18.27 
Equation (5.1) 16.08 

6. CONCLUSIONS 

A set of models of two-phase two-dimensional 
composite materials has been devised which permits 
construction of materials corresponding to any pos- 
sible effective thermal conductivity for given volume 
fractions and given constituent conductivities. By 
using these models it has been shown that: 

(a) Knowledge of effective conductivity for one set 
of phase conductivities k,, k2 cannot afford precise 
knowledge or narrow bounds on effective conductivity 
for another set of phase conductivities. 
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(b) Knowledge of effective conductivity for two sets 
of phase conductivities probably affords fairly precise 
bounds on effective conductivity at a third set of phase 
conductivities. 

(c) A reasonable estimate of effective conductivity 
for one set of phase conductivities can be made when 
effective conductivity is known at another set by use of 
equation (5.1). 

(d) Knowledge of three-point correlation functions 
of two-phase composites cannot afTord narrow bounds 
on effective conductivity of composite materials. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
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APPENDIX1 

The cylinder assemblage model of Hashin is constructed as 
follows: Consider a space completely filled by composite 
cylinders, each cylinder having a core of conductivity k, and 
an outer shell of~onductivity !q,. The ratio ofcorediameter to 

FIG. 5. Composite cylinders assemblage. 

,kz, volume frortion= @v, 

\ 
\ \ k,s volume fmction: 

I ‘k,, volume fraction = 11-a IV, 

k2ivolume fmction ii tr-@jv, 

FIG. 6. Typical “larger scale” composite cylinder, 
Models Ia. 

kz: volume fmction (I-r))v2 

I 

/ 
‘k2; volume fmctim* ?p2 

k,, volume fmction=Xv, 

FIG. 7. Typical “larger scale” composite cylinder, 
Models Ha. 

outer diameter of the shell is maintained constant, i.e. 

d 
2 = constant, 
db 

and it is assumed that composite cylinders of all sines are 
available so that in the limit the space can be completely filled 
out. This material is illustrated in Fig. 5. When the space is 
completely tilled 

d 3 
o,=l- 2 0 d, 

and the etfective conductivity of the aggregate is given by 
equation (2.2). 

This model can be generalized as follows: Suppose that 
material having conductivities k, and k, are available in 
proportions determined by volume fractions v, and vz. Let us 
take a portion of the k, material with volume fraction uv, 
(a 6 1) and a portion of the k2 material with volume fraction 
/?vs (fl d 1) and construct a CCA material with the k, 
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material being in the cores of the composite cylinders. The 
effective conductivity of such a material can be calculated 
using equation (2.2) with 

the second. The appropriate volume fractions are 

v, = au, +/Iv, 0, = 1 -au1 +fiv,. 

A typical composite cylinder of this material is illustrated in 

and k, = k,, k, = k,. Now we take the remainder of the two 
materials and construct a second CCA material again with 
the k, material constituting the cores of the composite 
cylinders. The effective conductivity of such a material can 
again be calculated using equation (2.2) now taking 

(I -a)01 
“’ = 1 -au, -/3vr 

(I -B)rz 
‘* = l-au, -j3vr 

Fig. 6 where the difference in scales has been understated. The 
effective’conductivity of this two-scale composite is then given 
by (2.3). We here point out several interesting features of the 
model evident from Fig. 1. First of all for a = 1, the effective 
conductivity is that of one version of the basic CCA model, 
k:.2 (which is the Hashin upper bound when the phases are 
identified as above, or the lower bound had they been 
identified such that k, < k,). For a = 0, /I = 1 the effective 
conductivity is that of the other version of the basic CCA 
model, kf , (which is the Hashin lower bound when the 
phases are identified as above, or the upper bound had they 
been identified such that k, < k,). 

and again k, = k,, k, = k,. Now the basic assumption in Another model is illustrated in Fig. 7. Here in the outer 
seeking effective properties of composite materials is that as shell of the large scale composite cylinders the higher 
long as global geometry is large compared to microstructure conductivity material is in the cores of the smaller scale 
the material can be treated as a continuum. Let us then take composite cylinders while in the cores of the large scale 
the two “continua,” constructed above and construct from composite cylinders the lower conductivity material is in the 
them another CCA material. It is only necessary that the scale cores of the smaller scale cylinders. In the shells of the large 
of the diameters now being used be large compared to the scale composite cylinders, we put 10, of material “1” and qv, 
scale of the two sub-composites. Into the core of this new of material “2”. The effective conductivity of this two-scale 
CCA we put the first described sub-composite, into the shell composite is given by equation (2.5). 

APPENDIX 2 
For the case k;/k; > k,Jk, Prager’s bounds are 

k*’ > 
1 [( > (vJk,)((l,k)- Mc’Wk’, - WA2 -1 
7 - k (v2,k,)(l,k;- l,k,)(l,k; -l/k;)+ (l/k*-l/k,)(l/k;k,-l/k;k,) I 

v,k,((k)-k*)(k’, -k;,2 
k*‘< ‘k”-v,k2(k,-k2)(k;-k;)+(k*-k2)(k;k+’,k2) 

where ( ) denotes volumeaverage,e.g. (k) = v,k, +v,k, and (l/k) = q/k, +v,/k,. It isnot required herethat k,/k, > 1. For 
the case k;/k; < k,/k, the proper bounds are obtained by interchanging the subscripts in the bounds written out above. Again 
there is no requirement that k2/k‘, > 1. 

A PROPOS DE LA CONDUCTIVITE EFFECTIVE TRANSVERSALE D’UN 
MATERIAU BIDIMENSIONNEL ET BIPHASIQUE 

R&am-On considere un mattriau biphasique dam lequel les frontieres entre phases sont des surfaces 
cylindriques (mattriau renford par fibres). On Ctudie un mattriau pour lequel les details prtcis de 
gtomttrie de phase ne sont pas connus, et on cherche quel degre de connaissance de la conductivite 
thermique effective transversale, pour une paire de conductivitts des phases, determine la conductivite 
thermique effective d’un materiau identique avec differentes conductivitts des phases. On regarde aussi 
si l’on peut esperer obtenir des relations dtroites sur la conductivite effective en termes de fonctions de 

correlation a trois points. 

ZUR EFFEKTIVEN TRANSVERSALEN WARMELEITFAHIGKEIT 
ZWEIDIMENSIONALER ZWEIPHASENMATERIALIEN 

Zusammenfaasung-Es wird ein Zweiphasemnaterial mit zylindrischen PhasengrenatIachen betrachtet 
(faserverstarktes Material), wobei die Phasengeometrie im Detail unbekannt ist. Es wird untersucht, 
inwieweit von der effektiven transversalen Warmeleitfahigkeit fiir eine Materialkombination auf die effektive 
transversale Wiirmeleitfiihigkeit eines geometrisch identischen Materials mit anderer Wiirmeleitfiihigkeit der 
Komponenten geschlossen werden kann. AuDerdem wird die Frage untersucht, ob man mit Hilfe von 3- 

Punkt-Korrelationsfunktionen enge Grenzen fur die effektive Warmeleitfahigkeit aufstellen kann. 
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06 3@DEKTPIBHOfi FIOllEPE~HOZi TEI-lJIOl-IPOBO~H~ fiBYXQA3HOl-0 
MATEPHAJIA 

Aimom - PaccMaTpHsaeTcn gByxQa3HbIii MaTepaan, B ~0T0p0~ (Pa30BbIhiH rpaHz.iqahiH IIBJIR- 
l0TCS-I IJUJIHHApHWCKHe lTOBepXHOCTH (MaTepHaJI, apMHpOBaHHblii BOJIOKHBMH). Bbr6paH TaKOti 

MaTep~an,~a~~~~p~r~ ~o~~o~e~3~e~THareo~eTpH11~a3,HHa~~~ccneAyeTcr,~KaKo~cTeneHu 

3HilHHe 3I$~KTHBtIOti FIOlle~YHOfi TelUIO~pOBOAHOCTH OAHOti IIapbI I$a3 II03BOJIReT OI'I~AeAHTb 

*@K~BHYK) TennonpoBoAHocTb re0~eTpHlie.c~~ HAeHTwniorohsaTepHana c ~TN~VHOR T~MOU~O- 

~0AIi0c~b10 4a3. Pacch4aTpHBaeTczi TilIoKe B03~oxwocTb 0npeAeAewin npeAeA0~ *KTHBHOB 

TeWIOlTpOB0AHOCTliCIIOMOIAblo T~XTOre~HbIXKOp~AKuHO~IX~yHK9H~. 


